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+ Biofuels

® Fuels produced from renewable
biological sources, like plant
matter

® Mature and compatible with
aviation infrastructure

o 3 feedstock types

® 9 high readiness level pathways




Carbohvdrate based feedstock
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+ Electrofuels
® Capturing CO2and CO

® Combine with hydrogen from
water electrolysis to obtain
useable fuel

Carbon Sourcing  Hydrogen Supply
e Biomass e Biomass

® Ffossil ® Fossil

® Atmospheric ® Water-splitting
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+ Electricity/Battery-Based

® Power propulsion
[ ] ” [ ]
o “More electric” architectures

® Limitations




* Hydrogen

® 3x energy-to-weight ratio versus
kerosene!

e Storage limitations
e Existing aircraft:




+ Aircraft Improvements

Airlines and manufacturers
constantly improving fuel
efficiency

More efficient turbojets
Better aerodynamics
Weight reduction

Boeing EcoDemonstrator
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Sustainable
Aviation Fuels

(SAF)

Sustainable aviation fuel (SAF) is
a type of aviation fuel that is
made from renewable sources. It
has a lower carbon footprint
than traditional jet fuel, and it
can be used in existing aircraft
without any modifications.




PROS

Sustainable - renewable
material

No need for airplanes to
make modification

Extra revenue for farmers
Environmental service
Improved aircraft service

SAF

©

e Costs
e Don’t remove the

remaining CO2 and toxic
emissions

e Collecting renewable
sources
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Distance vs. Size
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Hydrogen Fuel
Cells
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Hydrogen fuel cells generate B e
electricity from hydrogen and " =
oxygen, producing only water as
a byproduct




PROS

Hydrogen Fuel Cells

Zero emission (only
produce water)
High energy density
Scalability (can
accommodate large

aircrafts)

CONS

©

Costs
Infrastructure

Storage requirement
(tfemperature control)
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Distance vs. Size
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Electric
Aircraft

Electric aircraft are planes
powered by electric motors that
use electricity stored in batteries
or fuel cells.




PROS

Zero emission

Lower operating cost e Initial/maintenance Cost
Quieter operation e Weight

Electric Aircraft

©

e Limited range
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Distance vs. Size
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Ammonia

Ammonia (NH3) is a compou
that can be used as a fuel in
certain applications. It is a
colorless gas with a pungent
odor and is composed of one
nitrogen atom bonded to thre
hydrogen atoms.




Ammonia

o ©

e Zero emission e Cost
e sftored and transported e Produce toxic gas
easily

e No need for airplanes to
make modification




Distance vs. Size
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Emissions
Forecasts
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Methodologies of calculations

For individual purposes

Input data: External data:
Airport locations - Fuel burn

Freight load
Seating configuration
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Methodologies of calculations

Each model gives different insights

pAEASA

European Aviation Safety Agenc

AERO
Aviation Emission and Evaluation of Reduction Options

Federal Aviationgiy\el=
Administration System for Assessing Aviation Global Emissions

FLEET
Fleet Level Environmental Tool

UNIVERSITY
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Forecast results - SAF

Expected SAF required for Net Zero 2050
In 2016:
~8 million liters

~500 flights
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McCausland, Richard. “Net Zero 2050: Sustainable Aviation Fuels,”
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Forecast results - Hydrogen Fuel Cells
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With today’s aviation:

Sofia Pinheiro Melo et al., “Model-Based Assessment of the Environmental Impacts of Fuel Cell Systems Designed for EVTOLSs,”
International Journal of Hydrogen Energy 48, no. 8 (January 26, 2023): 3171-87, https://doi.org/10.1016/j.ijhydene.2022.10.083.
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Forecast results - SAF, Hydrogen and
Electricity

Carbon equivalent emissions

1990 2000 2010 2020 2030 2040 2050

Year %.

Bergero, C., Gosnell, G., Gielen, D. et al. Pathways to net-zero emissions from aviation. Nat Sustain 6, 404-414 (2023).
https://doi.org/10.1038/s41893-022-01046-9 31
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Regulations
and Incentives
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In the US




EPA

2016: EPA identifies aviation as significant source of GHG and air
pollution

2020: EPA announces plans to enact regulation aligning with
International Civil Aviation Org. (ICAO) standards

2021: EPA enacts first aviation GHG standard

e Targets new aircraft, not existing
e Modeled after
e Mostly met by existing aircraft, thus no net emissions reductions predicted

2022: US Supreme Court limits EPA’s ability to regulate air
pollution 3
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+ SAF Tax Incentive

$1.25

$0.0l

Additional credit for
every % GHG
reduction over 50%

50%

Credit for each gallon Minimum reduction of
of fuel GHG emissions

required to qualify
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In the World




Carbon Offsetting Reduction Scheme for
Int’l Aviation (CORSIA)

107 171% 90%
Nations participating Int’l aviation Aviation traffic
in CORSIA represented represented
post-2027

Carbon Offset Strategies
Reforestation
Direct Air Capture (DAC)
Carbon Capture Utilization and Storage (CCUS)
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|ATA: Net-Zero by 2050

SAFs Offsetting
Potential of 80% CO2 CORSIA offsetting
reduction, 65% of and carbon capture
overall emissions strategies
reduction
Operations
and New Aircraft
Infrastructure Technologies
Improved airport More economical
efficiency and engine and airframe
logistics designs
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ICAO

Coalition of member
nations

Sets forth standards
and guidelines for
sustainability
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+* Conclusion

- Current sustainability solutions are promising, but have
a lot of limitations. These are the targets for newest
engineering efforts.

- Great variations of emissions depending on
technologies and scenarios

- International and local policies are essential for
promoting cleaner aviation practices
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Thank you!




