Decarbonization in Aviation

Dellen Behrend, Charlie Bright, Marcus D'Avignon, and Jennifer Han

Table of contents

01

Current Sustainability Solutions

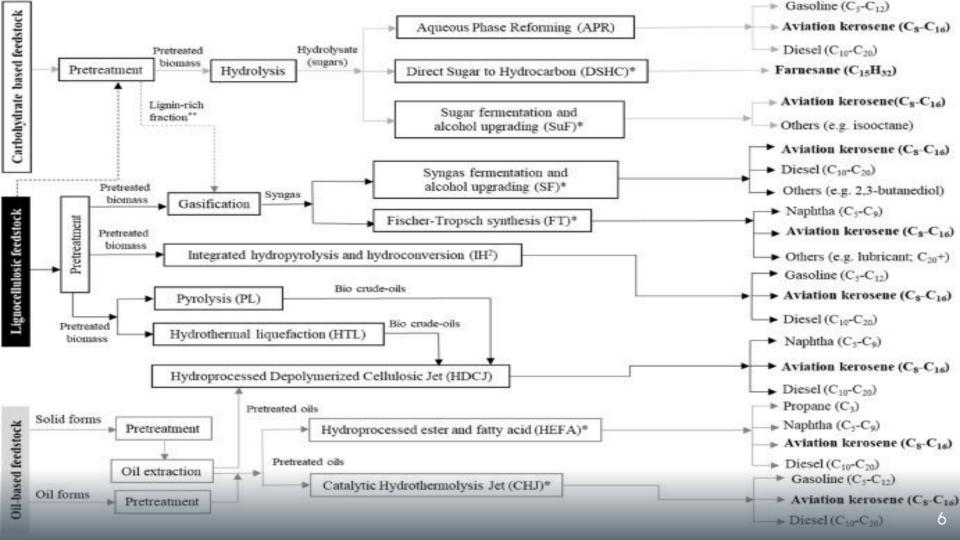
03 Emissions Forecasts 02

Challenges of Emerging Energy Sources

04 Regulations and Incentives

Current Sustainability Solutions

ABELLIES

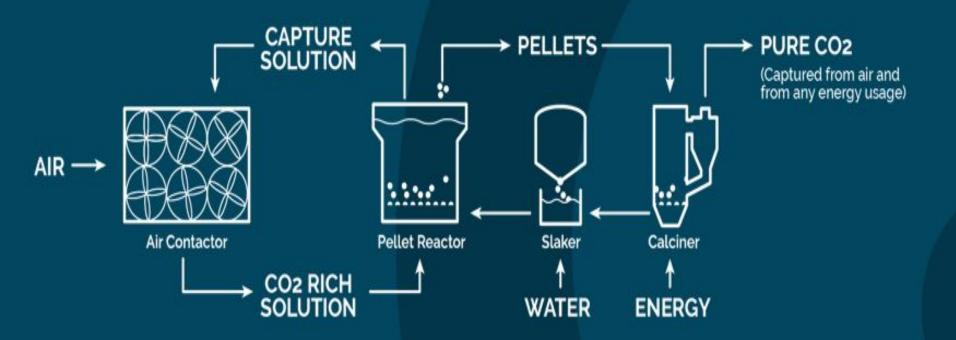

AT A GLANCE:	
01	02
Biofuels	Electrofuels
03	04
Electricity/Battery– Based	Hydrogen
05	
Aircraft Improvements	

Biofuels

- Fuels produced from renewable biological sources, like plant matter
- Mature and compatible with aviation infrastructure
- 3 feedstock types
- 9 high readiness level pathways

Electrofuels

- Capturing CO₂ and CO
- Combine with hydrogen from water electrolysis to obtain useable fuel


Carbon Sourcing

- Biomass
- Fossil
- Atmospheric

Hydrogen Supply

- Biomass
- Fossil
- Water-splitting

CE's Direct Air Capture process, showing the major unit operations - air contactor, pellet reactor, slaker, and calciner - which collectively capture, purify, and compress atmospheric CO₂

Electricity/Battery-Based

• Power propulsion

• "More electric" architectures

• Limitations

Hydrogen

- 3x energy-to-weight ratio versus kerosene!
- Storage limitations
- Existing aircraft:

Aircraft Improvements

- Airlines and manufacturers constantly improving fuel efficiency
- More efficient turbojets
- Better aerodynamics
- Weight reduction
- Boeing EcoDemonstrator

02 Challenges of Emerging **Energy Source**

ARTIST.

TABLE OF CONTENTS 01 02 SAF Hydrogen Fuel Cells 03 04

Electric Aircraft

 \mathbf{T}

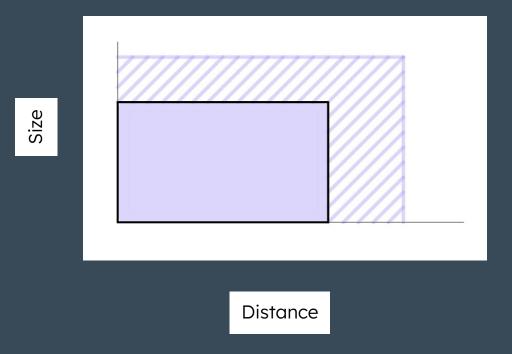
Ammonia

Sustainable Aviation Fuels (SAF)

Sustainable aviation fuel (SAF) is a type of aviation fuel that is made from renewable sources. It has a lower carbon footprint than traditional jet fuel, and it can be used in existing aircraft without any modifications.

SAF

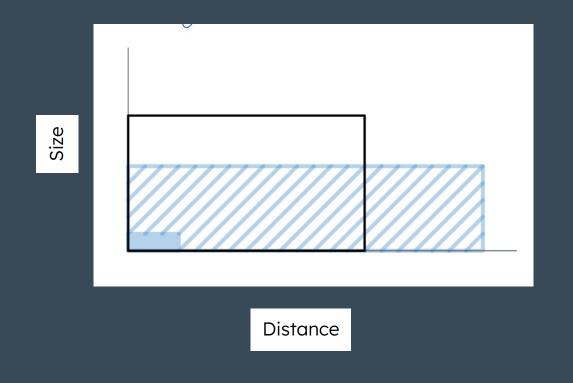
PROS


- Sustainable renewable material
- No need for airplanes to make modification
- Extra revenue for farmers
- Environmental service
- Improved aircraft service

CONS

- Costs
- Don't remove the remaining CO2 and toxic emissions
- Collecting renewable sources

Distance vs. Size

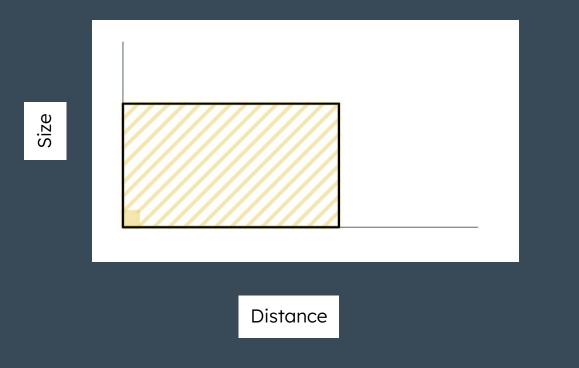

Hydrogen Fuel Cells

Hydrogen fuel cells generate electricity from hydrogen and oxygen, producing only water as a byproduct P demonstra

Hydrogen Fuel Cells

Distance vs. Size

Electric Aircraft


Electric aircraft are planes powered by electric motors that use electricity stored in batteries or fuel cells.

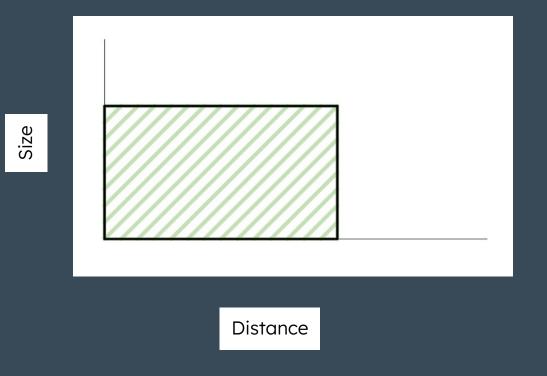
Electric Aircraft

Distance vs. Size

Ammonia

Ammonia (NH3) is a compou that can be used as a fuel in certain applications. It is a colorless gas with a pungent odor and is composed of one nitrogen atom bonded to thre hydrogen atoms.

Ammonia



 \bullet

 \bullet

 \bullet

Distance vs. Size

03 Emissions Forecasts

-CREEKLERS

Methodologies of calculations

For individual purposes

Input data:

- Airport locations

External data:

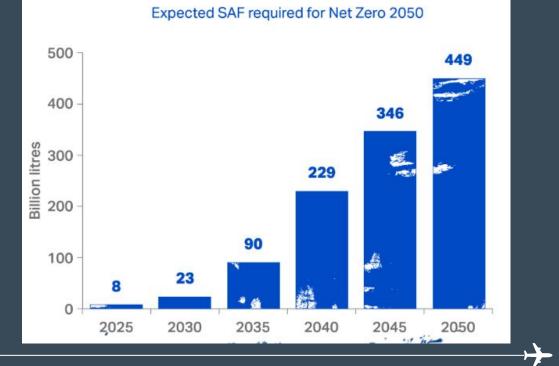
- Fuel burn
- Freight load
- Seating configuration

Methodologies of calculations

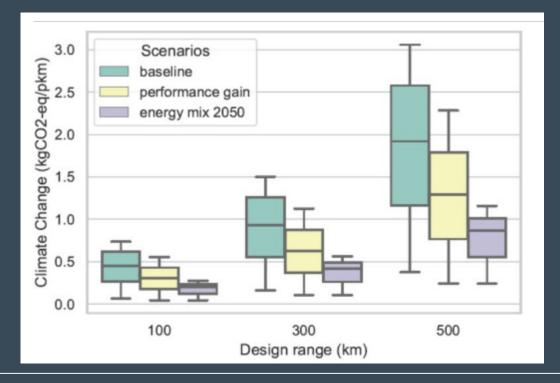
Each model gives different insights

AERO Aviation Emission and Evaluation of Reduction Options

SAGE System for Assessing Aviation Global Emissions

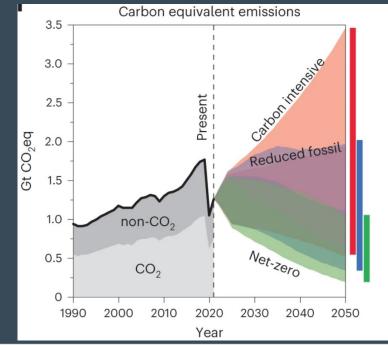

FLEET Fleet Level Environmental Tool

Forecast results - SAF


In 2016:

~8 million liters

~500 flights


Forecast results – Hydrogen Fuel Cells

With today's aviation: ~100 g CO₂-eq. per passenger-kilometer

Sofia Pinheiro Melo et al., "Model-Based Assessment of the Environmental Impacts of Fuel Cell Systems Designed for EVTOLs," *International Journal of Hydrogen Energy* 48, no. 8 (January 26, 2023): 3171–87, <u>https://doi.org/10.1016/j.ijhydene.2022.10.083</u>.

Forecast results - SAF, Hydrogen and Electricity

Bergero, C., Gosnell, G., Gielen, D. *et al.* Pathways to net-zero emissions from aviation. *Nat Sustain* **6**, 404–414 (2023). https://doi.org/10.1038/s41893-022-01046-9

04 Regulations and Incentives

AREA OF T

In the US

EPA

<u>2016</u>: EPA identifies aviation as significant source of GHG and air pollution

<u>2020</u>: EPA announces plans to enact regulation aligning with International Civil Aviation Org. (ICAO) standards

2021: EPA enacts first aviation GHG standard

- Targets new aircraft, not existing
- Modeled after
- Mostly met by existing aircraft, thus no net emissions reductions predicted

<u>2022</u>: US Supreme Court limits EPA's ability to regulate air pollution

↑ SAF Tax Incentive

\$1.25

Credit for each gallon of fuel

50%

Minimum reduction of GHG emissions required to qualify

\$0.01

Additional credit for every % GHG reduction over 50%

In the World

Carbon Offsetting Reduction Scheme for Int'l Aviation (CORSIA)

107

Nations participating in CORSIA 77%

Int'l aviation represented

90%

Aviation traffic represented post-2027

<u>Carbon Offset Strategies</u> Reforestation Direct Air Capture (DAC) Carbon Capture Utilization and Storage (CCUS)

LATA: Net-Zero by 2050

SAFs

Potential of 80% CO2 reduction, 65% of overall emissions reduction

Offsetting

CORSIA offsetting and carbon capture strategies

Operations and Infrastructure

Improved airport efficiency and logistics

New Aircraft Technologies

More economical engine and airframe designs · ICAO

Coalition of member nations

Sets forth standards and guidelines for sustainability

Conclusion

- Current sustainability solutions are promising, but have a lot of limitations. These are the targets for newest engineering efforts.
- Great variations of emissions depending on technologies and scenarios
- International and local policies are essential for promoting cleaner aviation practices

